
On the stability of a plain hollow vortex 51 

y,_, = iqy +z&o)) 

With known fl (5, 0) and aj, (5, 3)/& we can find fl (5, t) from Eq. (2.1) and then 
integrating (1.14) with b (t) = 0, to determine z1 (5, ,$). In this case the unknown 
functions are sought in the form of Taylor’s series. Formulas defining the solution of 
this problem are obtained by transition to the limit r + 0 in (1.18). 

It should be noted that all statements derived in Sect. 1 are valid in this limit case, 

The author thanks S. K. Godunov and E. E. Shnol for discussing this paper. 
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An exact solution of equations of a plain nonstationary potential isentropic motion 
of gas dependent on two arbitrary functions with the Poisson adiabatic exponent 

equal to two is derived. The solution is interpreted as the motion of “shallow 
water” with a free surface which must be ruled. The general aspects of shallow 

water motion, and in particular the case of a cylindrical free surface an nonuni- 
variate motion are considered. 

1. The equation defining a plane nonstationary potential isentropic motion of gas is 
taken in the form [l] 

(&)2 t q&G”, - (%“)” - Qr(QL4 f @“cJ + (1.1) 

+ (7 - 1)H [(O&g + (cDvH)2 + aQf%m - mm(QLu + QPJ)l = 0 

where u and 7~ are ,projections of the velocity vector v on the x and ,y axes of a Car- 
tesian system of coordinates, His the enthalpy , P is the time, y is the Poisson adia- 
batic exponent, and @ is the conjugate potentialrelated to the velocity potential (p by 
formula 

@ 5 q - zu - yz’ + t I’/, (u” -t 1j2) -I- ITI (1.2) 

Transition to variables t, 5, y is by formulas 
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t=@)H, x=ua)EI--mu, y=v@~--a& (1.3) 

Equation (1.1) is derived on the assumption of functional independence of variables 
U, V and H. A nonzero Jacobian is required if the transition to the space of variables 
t, X, Y is to be unambiguous. 

For y = 2 Eq. (1.1). after the substitution ‘r/z = s becomes 

~s[Qs--UU-- @,,I + s 14 VJLU%, - (%V)“l + 

+ (R$ + ~~,)” - (%I 4 @“,) (%)I = 0 (1.4) 

Formulas (1.3) can now be rewritten as 

t = l/@Ds, x = 1/3s-1Q - CD,, y = 1/2s-1&)11 - 0 I) (1.5) 

2, Let us seek particular solutions of Eq. (1.4) for which the over-all order of matrix 

M= 

is equal unity. 
For the sake of definiteness we assume that relationships 

CDU = p, ((J&)7 QJ = p, (Q) (2.1) 

hold for the first derivatives of function @ . 
The particular solutions of (1.4) with condition (2.1) satisfied are solutions with diff- 

erential relationships 121. To separate all such solutions we use the following tangential 

transformation [3]: 

T (E, u, v) = - @ + a@,, s = TE, ih, = - T, 
CD, = - T,, E = Q (SE # 0) (2.2) 

The tangential transformation (2.2) applied to Eq. (1.4) and the subsequent representa- 
tion-of T in the form 

T = 9 (E) - PI (E)u - Pa@’ 

yields al solutions of Eq. (1.4) with allowance for condition (2.1). Taking into account 
(1.2) and (1.5) we obtain the sought solution 

U = t--q2 + P, (E)l, v = t-lb + P, (81 (2.3) 
I? = P1’x f P,‘y - ql’t $- PIP, + P,Pz’ + ‘!& = 0 (2.4) 

l - &-1[(x $ PJP,’ + (Y + PAP,‘] (2.5) 
g = 2ts (2.6) 

Functions P, and P, are related by the Monge equation 

(Pi)” + (Pz’)” = 1 (2.7) 

whose solution is written in its final form as [4] 

PI= s coz 8 (E) @, p2= 1 sin 8 (Q dE (2.8) 

We have thus derived the particular solution of Eq. (1.4). which contains two arbitrary 
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functions Cl (E) and 11, (E). 
At fixed t Eq. (2.4) defines a particular case of a ruled surface generated by the 

motion of a straight line parallel to a given plane, i.e., a cylindroid [5]. This surface 
is developable (to wit, cylindrical) only for 8 = const. 

3, Let us consider the derived class of solutions (2.3) - (2.6) as defining the motion 
of “shallow water” over a horizontal bottom. The enthalpy can then be represented in 

the form 
H = gZ (3.1) 

where g is the acceleration of gravity and 2 the height of the free surface of fluid. 
F’ressure p in the shallow water approximation varies hydrostatically along the vertical 

column of fluid [6$ The mean pressure (p) and “density” (p) of the fluid are related 
to the height of its free surface by formulas 

(p> = ‘/s@Za= ~pdz, (P> = PZ9 (3.2) 
0 

H=2$ 

It follows from the foregoind analysis that at any instant the liquid free surface is a 
ruled one, and that the arrangement of the straight lines over it is defined by functions 

(3 (E) and $ (8. Th e ruled surface (2.4) is regular, since by virtue of that equation 
the partial derivatives with respect to 5, Y and f in the left-hand side of the latter 
cannot simultaneously vanish. 

let us find the conditions under which discontinuities of the shallow water free surface 

are possible. It _ffilows from (2.6) and (3.1) that the variable 5 is defined by the form- 
ula E = 2t fgz. Hence it is sufficient to determine the conditions of unboundedness 
of al/as and aE/ay. From (2.4) follows that 

ay;/ax = - p,*/r;, a@3y = - Pzvd (3.3) 

Owing to the boundedness of P, and Pz’ it is necessary to equate the denominators in 
the last formulas to zero, which together with (2.4) yields (for fixed t) the system of 

two equations r = (E>z + B (BY + (0 (8 = 0 

rel = a’(E) z + B’ (E)Y + 0’ (E) = 0 (3.4) 
u (E) = cos 0, /3 (EJ = sin 0 

0 (E) = co9 8 1 cos 0dt + sin 8 $ sin f3dg - $‘r’+ ‘/SE 

System (3.4) defines the envelope of the family of curves dependent on the single para- 

meter E. Two cases are possible, 
The first case aP 

I I 
=$#O (3.5) 

a’ p’ 
In this case it is possible to find for fixed 5 and t from system (3.4) the coordinates 
of points pertaining to the envelope 

z = - P, + rl, Y= - Pz + r2 

rl = & (ad + a12), rz = & (a2d + az2) (3.63 

aI1 = I$ (E)~'cos~ = 9" (E) sin 8, ai2 = 3/a sine - ‘I2 E 8’ ~0s 8 
a2i = 9,’ (E)W sine + *I” (E) cos0, u22 = - 13/, cos 8 + l/s E 8’ sin 01 

For given functions 8 and $ Eqs. (3.6) written in parametric form define the envelope 
of a family of straight lines. It is possible to construct this envelope a priori. Hence 
disruption of the shallow water free surface takes place along the straight line (3.6). 
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The second case occurs in the investigation of system (3.4), when the conditions 

0’ = 0, 9’ W = 3/2 (3.7) 
are simultaneously satisfied. The second of Eqs. (3.4) is then identically satisfied and 
the disruption of the shallow water free surface occurs along the generatrix of the ruled 

surface for certain values of E and t which are to be determined from system (3. ‘7). 

Streamlines of the considered motion of shallow water (with t taken as parameter) are 
defined by the system of two equations 

[z + P, (E)] Te - [Y + p, (E)l 2 = 0 (3.59 

a (8% + P (E) Yl i- 6) (8 = 0 

Assuming that the second of Eqs. (3.4) is not valid in the considered region, from (3.8) 
we obtain the system 

da -= x1 + Pl 

4 
1,a4_vtr’E, (3.9) 

Equation (2.4) with (2.3) taken into account assumes the form 

Pi’ (E)u + P’L’ (E)v + t-1 (‘/& - q’t) = 0 (3.10) 
This shows that, when 

‘/& - $t # 0 (3.11) 

then, by virtue of (2.7) u and v cannot simultaneously vanish. Thus, when (3.11) 
applies and rc’ # 0, system (3.9) has no singular points. It is possible to state for system 
(3.9) the Cauchy problem 

E = &I, Xl = 21 (EJ7 Yl = Yl w (3.12) 

provided the input data do not lie on the straight line (3.6), which can always be assumed. 
Let us turn our attention to one singularity of formulas (2.3) - (2.8) when E =O. It 

can be established by a direct test that for E = 0 the conditions of streamline flow 

are satisfied along the straight line 

2 = a (0)X + p (0)y + ir) (0) = 0 (3.13) 

This shows that motions of shallow water flowing along the straight line (3.13) over a 
dry bottom are possible. Formulas (3.13) implies that for $’ (E) 3 0 the motion of 
shallow water occurs along stationary streamlines. It is therefore possible to state the 

problem of motion of shallow water in some curvilinear channel whose walls must be 

defined by the integration of system (3.9) for 9’ (E) =- 0. 

4. Let us consider the particular case of 6 -= const. 
After rotation of the coordinate system, the solution (2.3) - (2. 8) can be written in 

the form 
u = t-1 (t + E,, D = r’y, I + S/z E - t*’ (5) = 0 (4.1) 

q = g) -I) + Vat-’ I(2 + 5,” + ya1 --lirpt-l - Et-1 (x + E) (4.2) 

The free surface of liquid, as shown by (4. I), is in this case cylindrical. 
The solution depends on a single arbitrary function. It should be noted that the above 
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assumptions do not apply in the case of one-dimensional motion of gas (v = 0) when 

y=2 . since the system of equations of gasdynamics does not admit the solution (4.1) 
(4.2) if the latter is dependent on an arbitrary function. The flow of liquid is symmetric 

about the axis y = 0. 
Solution (4. l), (4.2) has a physical meaning in the neighborhood of the plane Y = 0, 

since for y - 00 the absolute value of the velocity vector infinitely increases. 
Let us pose the following problem. let at t = t, the free surface of tie liquid be spe- 

cified as a function of x 

t = to, E = El (5) (to > 0) (4.3) 

Let us assume for simplicity that a1 is a monotonic function which for - w < x < CO 
has first and second derivatives. 

In this case function (4.3) can be reversed. Let the result of such reversion be as 

follows: 
t = t,, x= Q(E) (4.4) 

For t = to the velocity field is uniquely defined with respect to a given free surface by 

formula (4.1). The arbitrary function $’ (E) is found from (4.1) and the last relationship. 
Substituting $’ (5) into (4.1). we obtain 

5 + 312 E = tto-’ [a (E) + s/2 El (4.5) 

let us find the condition under which disruption of the shallow water free surface is 
possible. We write the second of Eqs. (3.4) as 

s/a = tto-’ [S’ (5) + s/s1 (4.6) 

This implies the possibility of determining r > t,, if condition 

- 3/2 < Q’ (5) < 0 

is satisfied. From (4.6) we then find 

tto-1 = [ 1 + */s Q’ (Ql -1 

(4.7) 

(4.8) 

The minimum value of the right-hand side of (4.8) must be taken (this determines 5 
at the instant of discontinuity onset). Substituting (4.8) into (4.5) we find the value of 
z at which a discontinuity is initiated 

5 = [a - @‘I [ 1 + 2/s WI-1 (4.9) 

If follows from (4.1) and (4.7) that formation of discontinuities is not possible, if the 
liquid free surface increases for z>O( (X + E) > 0) . In the opposite case discontinuities 
can occur. Condition (4.7) imposes limitations on the direction of the tangent to the 
free surface of liquid. These conclusions are in agreement with known results of invest- 

igations relative to the motion of shallow water [S]. 
The system of Eqs. (3.9) is integrable, and the equations of streamlines are as follows: 

21 = - L3/2E -t tt;l IQ (5) + 3/251l (4.10) 

Yl = c‘4 (5) 

c 

3/2 - if,’ (Q’ + 3/r) 

A (E;) = exp - u l/L< .- tt,l (Q _t 3/2[) 4 (c = const) 

5. We note that from the point of view of group classification the solution (2.3) - 
(2.8) is partly invariant n]. It is derived from a sub-group with invariants 
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J1 = u - xt-1, J2 = v - yt-l, Js = Jf/Ht 

with the following relationships: 

J1 = J, (Jd, Jz = J, (JA 
Here H is the “redundant” function. 

The particular case of 6 = con&, in (2.3) - (2.8) corresponds to the simplest function- 

ally-invariant solution of Eq. (1.4) of the form 

UJ =0(h), h = a1u + uzv f -r/m” + a29 s (al, u2 = const) 

which can be checked by direct calculation. 
The group properties of the system of equations defining the motion of shallow water 

were investigated in [8], however the derived here solution (2.3) - (2.8) was not obtained 

in that paper. 

The author sincerely thanks S. V. Fal‘kovich for valuable remarks and interest in this 

paper. 
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